Notice: Undefined variable: stop in /home/area7ru/great-victory.ru/docs/index.php on line 404
ЭЛЕКТРОННО-ЛУЧЕВАЯ ТРУБКА
Notice: Undefined variable: revisit in /home/area7ru/great-victory.ru/docs/index.php on line 1564
ВЕЛИКАЯ ОТЕЧЕСТВЕННАЯ ВОЙНА



Ход войны
Хронология войны
Сражения и операции
Сводки Совинформбюро
Военная фотохроника
Артиллерия Второй Мировой
Авиация Второй Мировой
Танки Второй Мировой
Советские военные песни
Рефераты на тему ВОВ
Женщины-герои СССР
Фото находок с войны

ТОП 20 материалов сайта
Рекомендуем посетить



                                              ДЕНЬ ПОБЕДЫ. Мнения людей

                                              Справочники и статистические данные


Униформа СССР
Униформа Германии
Униформа Италии
Униформа Англии
Униформа Польши
Униформа Франции
Униформа США
Униформа других стран

Вооружение Вермахта
Боеприпасы Вермахта

Книга об артиллерии



Артиллерия - книга

ЭЛЕКТРОННО-ЛУЧЕВАЯ ТРУБКА


Notice: Undefined variable: description in /home/area7ru/great-victory.ru/docs/index.php on line 1632

Notice: Undefined variable: br in /home/area7ru/great-victory.ru/docs/index.php on line 1632
Добавлено: 2012.11.09
Просмотров: 1576

Для измерения чрезвычайно малых промежутков времени, исчисляемых миллионными долями секунды, в радиолокации применяется так называемая электронно-лучевая трубка, сделанная из стекла (рис. 347). Плоское дно трубки, называемое экраном, покрыто с внутренней роны слоем особого состава, который может светиться от удара электронов. Эти электроны — заряженные отрицательным электричеством мельчайшие частички — вылетают из находящегося в горлышке трубки кусочка металла, когда он бывает в нагретом состоянии.

В трубке, кроме того, имеются заряженные положительным электричеством цилиндры с отверстиями. Они притягивают к себе вылетающие из нагретого металла электроны и тем самым сообщают им быстрое движение. Электроны пролетают через отверстия цилиндров и образуют электронный луч, который ударяется о дно трубки. Сами по себе электроны невидимы, но на экране оставляют светящийся след — маленькую светящуюся точку (рис. 348, A).

Рис. 347. Электронно-лучевая трубка

Посмотрите на рис. 347. Внутри трубки вы видите еще четыре металлические пластинки, расположенные попарно — вертикально и горизонтально. Эти пластинки служат для того, чтобы управлять электронным лучом, то-есть заставлять его отклоняться вправо и влево, вверх и вниз. Как вы увидите дальше, по отклонениям электронного луча можно отсчитывать ничтожно малые промежутки времени.

Представьте себе, что вертикальные пластинки заряжены электричеством, причем левая пластинка (если смотреть со стороны экрана) содержит положительный заряд, а правая — отрицательный. В этом случае электроны, как отрицательные электрические частички, при прохождении между вертикальными пластинками притягиваются пластинкой с положительным зарядом и отталкиваются от пластинки с отрицательным зарядом. Вследствие этого электронный луч отклоняется влево, и мы видим светящуюся точку в левой части экрана (см. рис. 348, Б). Понятно также, что если левая вертикальная пластинка заряжена отрицательно, а правая положительно, то светящаяся точка на экране оказывается справа (см. рис. 348, В).

А что получится, если постепенно ослаблять или усиливать заряды на вертикальных пластинках и, кроме того, менять знаки зарядов? Тем самым можно заставить светящуюся точку принять любое положение на экране — от крайнего левого до крайнего правого.

Положим, что вертикальные пластинки заряжены до предела и светящаяся точка занимает крайнее левое положение на экране. Будем постепенно ослаблять заряды, и мы увидим, что светящаяся точка начнет Передвигаться к центру экрана. Она займет это положение, когда заряды на пластинках исчезнут. Если затем мы снова зарядим пластинки, переменив знаки зарядов, и при этом будем постепенно усиливать заряды, то светящаяся точка передвинется от центра в крайнее правое свое положение.

Рис. 348. Положение светящейся точки на экране зависит от направления электронного луча: <i>А</i> — электронный луч направлен прямо; <i>Б</i> — электронный луч отклоняется вертикальными пластинками влево; <i>В</i> — электронный луч отклоняется вертикальными пластинками вправо; <i>Г</i> — электронный луч отклбняется от крайнего левого положения до крайнего правого при постепенном (хотя и быстром) ослаблении и усилении зарядов вертикальных пластинок; на экране сохраняется непрерывно светящийся след

Так регулируя ослабление и усиление зарядов и производя в нужный момент смену знаков зарядов, можно заставить светящуюся точку пробегать из крайнего левого положения в крайнее правое, то-есть по одному и тому же пути, хотя бы 1000 раз в течение одной секунды. Пря такой скорости движения светящаяся точка оставляет на экране непрерывно светящийся след (см. рис. 348, Г), подобно тому, как оставляет след тлеющая спичка, если ее быстро двигать перед собой вправо и влево.

След, оставляемый на экране светящейся точкой, представляет яркую светящуюся линию.

Положим, что длина светящейся линии равна 10 сантиметрам и что светящаяся точка пробегает это расстояние ровно 1000 раз в течение одной секунды. Другими словами, будем считать, что расстояние в 10 сантиметров светящаяся точка пробегает за 1/1000 секунды. Следовательно, Рис. 349. Светящаяся точка пробегает в одну сторону (слева направо) отрезки пути за весьма малые промежутки времени, исчисляемые микросекундами расстояние в 1 сантиметр она пробежит за 1/10 000 секунды, или за 100 микросекунд (100/1 000 000 секунды). Если под светящейся линией длиной 10 сантиметров поместить сантиметровую шкалу и разметить ее деления в микросекундах, как показано на рис. 349, то получатся своего рода «часы», на которых движущаяся светящаяся точка отмечает весьма малые промежутки времени.

Но как же по этим часам отсчитывать время? Как узнать, когда придет отраженная волна? Для этого, оказывается, и нужны горизонтальные пластинки, расположенные впереди вертикальных (см. рис. 347).

Мы уже говорили, что, когда приемник воспринимает радиоэхо, в нем возникает кратковременный ток. С появлением этого тока верхняя горизонтальная пластинка тотчас заряжается положительным электричеством, а нижняя отрицательным. Благодаря этому электронный луч отклоняется кверху (в сторону положительно заряженной пластинки), и светящаяся точка делает зигзагообразный выступ — это и есть сигнал отраженной волны (рис. 350).

Рис. 350. Светящаяся точка отмечает время прихода отраженной радиоволны. На экране вы видите два сигнала, полученные в разное время: через 200 и 650 микросекунд. Вьц обнаружили две цели, из них одна ближе, а другая дальше. Теперь уже нетрудно подсчитать расстояние до этих целей Надо заметить, что радиоимпульсы посылаются в пространство передатчиком как раз в те мгновения, когда светящаяся точка находится против нуля на экране. Вследствие этого каждый раз, когда радиоэхо поступает в приемник, сигнал отраженной волны получается в одном и том же месте, то-есть против той цифры, которая отвечает времени прохождения отраженной волны. А так как радиоимпульсы следуют один за другим очень быстро, то и выступ на шкале экрана представляется нашему глазу непрерывно светящимся, и со шкалы легко снять необходимый отсчет. Строго говоря, выступ на шкале перемещается по мере передвижения цели в пространстве, но, благодаря малости масштаба, это перемещение за Рис. 351. Пользуясь шкалой дальностей, вы определяете расстояние до целей. По положению сигналов видно, что одна цель от вас в 30, а другая в 97 километрах малый промежуток времени совершенно ничтожно. Понятно, что чем дальше от радиолокационной станции находится цель, тем позже приходит радиоэхо, а следовательно, тем правее на светящейся линии располагается зигзаг сигнала.

Чтобы не делать расчетов, связанных с определением расстояния до цели, на экран электронно-лучевой трубки обычно наносят шкалу дальностей.

Рассчитать эту шкалу очень нетрудно. Мы знаем уже, что в течение одной микросекунды радиоволна проходит 300 метров. Следовательно, в течение 100 микросекунд она пройдет 30 000 метров, или 30 километров. А так как радиоволна проходит за это время двойное расстояние (до цели и обратно), то деление шкалы с отметкой 100 микросекунд соответствует дальности, равной 15 километрам, а с отметкой 200 микросекунд — 30 километрам и т. д. (рис. 351). Таким образом, наблюдатель, стоящий у экрана, может по такой шкале непосредственно считывать расстояние до обнаруженной цели.

Итак, радиолокационная станция дает все три координаты цели: азимут, угол места и дальность. Это те данные, которые необходимы артиллеристам-зенитчикам для стрельбы при помощи ПУАЗО.

Радиолокационная станция может на расстоянии 100–150 километров обнаружить такую маленькую точку, какой кажется самолет, летящий на высоте 5–8 километров над землей. Проследить путь цели, измерить скорость ее полета, пересчитать количество летящих самолетов — все это может сделать радиолокационная станция.

В Великой Отечественной войне зенитная артиллерия Советской Армии сыграла большую роль в обеспечении победы над гитлеровскими захватчиками. Взаимодействуя с истребительной авиацией, наша зенитная артиллерия сбила тысячи вражеских самолетов.


Notice: Undefined variable: print in /home/area7ru/great-victory.ru/docs/index.php on line 1635

Notice: Undefined offset: 1 in /home/area7ru/area7.ru/docs/linkmanager/links.php on line 21


При использовании материалов сайта, активная ссылка на GREAT-VICTORY.RU обязательна!